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A vector tabu search algorithm encapsulating a new updating mechanism for current state and a directed search phase is proposed 

to enhance its searching ability for Pareto solutions. The new updating mechanism considers quantitatively both the number of 

improved objectives and the amount of improvements in a specified objective. The directed search phase uses some desired directions, 

a priori knowledge about the objective space, as the moving direction to efficiently find improved solutions without any gradient 

computation procedure.  The numerical results on a high frequency inverse problem are reported to demonstrate the pros and cons of 

the proposed algorithm.  It is observed that the proposed vector tabu search method outperforms its ancestors in both convergence 

performance and solution quality. 
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I. INTRODUCTION 

N ENGINEERING inverse and optimal problems, it is not 

uncommon to ask a designer to satisfy several seemingly 

conflicting objectives simultaneously to meet a set of tradeoffs 

among different criteria. Generally, the final solutions of such 

a design problem are a set of compromises of different 

objectives called Pareto optimal solutions. Consequently, an 

acceptable multi-objective optimizer should have the ability to 

find as many Pareto optimal solutions as possible, and these 

solutions should also be as uniformly distributed as possible. 

To achieve these two ultimate goals, a huge amount of efforts 

have been devoted to the advancement of evolutionary 

algorithms (EA), because of their suitability in finding 

multiple solutions in a single run [1]-[3]. Nowadays, 

evolutionary algorithms have become the paradigms for 

solving multiobjective design problems.  
However, it is well-known that EAs normally require a 

large amount of function evaluations, due to their slow 

convergence rate, in order to generate a suitable finite size 

approximation of the set of interests [4]. Moreover, the 

dominant concept is commonly used in EAs to assign the 

fitness value of an individual. Nevertheless, such approach 

may only determine qualitatively the relationship of 

dominances and may not measure, quantitatively, the number 

of improved objectives [5]. The amount of improvements in a 

specified objective may not be quantified either. Also, very 

few efforts have been devoted to address the balance between 

the conflict for the convergence towards the Pareto front, and 

the requirement to maintain diversities in the searched Pareto 

optimal solutions [6]. In an attempt to addressing these 

deficiencies of existing multiobjective EAs, a specially 

defined metric measure is introduced, and a new updating 

mechanism for current state using this metric is designed and 

encapsulated into a vector tabu search algorithm [7]. Also, a 

directed search phase is integrated as a refinement searching in 

order to efficiently find promising solutions.  

II.  A ENHANCED VECTOR TABU SEARCH ALGORITHM 

 The details about the vector tabu search method are 

refereed to [7] and the references therein. This section will 

describe only the new proposals to enhance the searching 

ability for Pareto solutions of the algorithm. 

A. Updating Mechanism of Current State 

The updating mechanism for current state in a scalar tabu 

search algorithm is that the "best" solution of the feasible 

moves generated in neighbors of the current state is selected as 

the new current one. Nevertheless, the optimal solutions of a 

multi-objective design problem are not unique but a set of 

tradeoffs among different objectives. This feature will give 

rise to a dilemma in selecting the "best" feasible move when 

updating the current states since the fitness values of different 

Pareto optimal solutions are the same. To address this issue, 

and moreover to further consider both the number of improved 

objectives and the amount of improvements in a specified 

objective for different Pareto solutions, an improvement 

metric is introduced. For a neighbor solution, xm, the proposed 

metric is precisely given by 

 
1 1 max min

( ) ( )
( ) [ ( ) ( )]{1 }

( ) ( )

R k
l j l m

improve m l j l m
j l l l
j k

f x f x
x sign f x f x

f f


 



  


 

(1) 

1 ( 0)
( )

0 (otherwise)

x
sign x


 


                                  (2) 

where R is the number of neighborhood solutions, k is the 

number of objectives.    

Using this accumulation factor to „penalize‟ the fitness 

value of the neighborhood solution xm yields the following 

fitness assignment formula 

improve( ) ( ) (1 ) ( )nor

fit m fit m mf x rf x r x            (3) 

where, ( )nor

fit mf x  is the normally defined fitness of xm using 

the dominance concept, r is a random parameter uniformly 

generated in [0,1].  

 The best move among all neighborhood solutions in terms 

of their fitness values as given in (3) will be selected as the 

new current state. It should be pointed out that some “most” 

likely but not exactly Pareto solution may be selected as the 
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new current state under the proposed updating mechanism of 

current states, guaranteeing the diversity of the algorithm. 

B. A Directed Search Phase  

 To steer the searches in a desired direction to find 

improved solutions efficiently, a directed search method is 

proposed and integrated as a refinement searching phase. To 

start with, the "Pareto front" is firstly approximated using the 

solutions in the External Archive. To provide the desired 

search directions for the directed search using a priori 

knowledge about the objective space, it is proposed to 

construct a hypercone centered in the solution in question, jx , 

and identify the closest point, 
hx , on this hypercone, to jx  ; 

and the desired searching direction, id , is then readily defined 

by connecting the two points in the objective space. To seek 

the corresponding searching direction, v, in the parameter 

space for k

id ,  the following equation is solved [8] 
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where fl is the l
th

 objective. (4) can be mathematically 

transformed to: 

( ) j iJ x v d ,                                        (5) 

where J() is the Jacobian of the objective vector F, and 

moreover, 
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Since n k , (5) is highly underdetermined, and the 

solution with the least 2-norm is viewed as the greedy 

direction, resulting in 

 ( ) ,  j iv J x d                                     (7) 

where ( )jJ x   is the pseudo inverse of ( )jJ x . 

The refinement search around solution xj in direction v is 

easily implemented using 

  new jx x tv  ,                                      (8) 

where t is a small step size vector, and ti is randomly selected 

from [0, 0.05i]( i is the dimension size of the i
th

 variable).  

III.  NUMERICAL EXAMPLES 

To evaluate the performances of the proposed method, it is 

numerically experimented on both high and low frequency 

inverse problems. Due to space limitations, only numerical 

experiments on a high frequency inverse problem are reported. 

In this case study, the optimal design goal is to synthesize a 

non-uniformly spaced antenna array, as shown in Fig. 1, to 

produce a desired field pattern. A two objectives optimal 

problem is thus formulated as [7] 
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where, MSLLdesired is the desired Maximum SideLobe Level 

(MSLL), and, 
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where, ( )norm

desired if   is the value of the normalized desired 

radiation pattern at the sampling point i , ( )norm

designed if   is the 

value of the radiation pattern produced by a designed array of 

M elements, N is the number of total sampling points. The 

field pattern is computed by using an analytical solution [7]. 

To evaluate the average performance of the proposed 

algorithm, it is run randomly and independently 10 times, and 

the average number of iterations is 29465, this is compared to 

34568 of the original vector tabu search algorithm of [7]. 

Moreover, to compare the quality of the final solutions, the 

135 searched Pareto solutions of the proposed (Proposed) 

algorithm in a typical run are compared to 121 ones of the 

original tabu (OTabu) search method in also an arbitrary run. 

It is observed that: 

(1) 8 out of the total 135 Pareto solutions of the Proposed 

are dominated by at least one of the Pareto solutions of OTabu. 

(2) 39 out of the total 121 final solutions of the OTabu are 

dominated by at least one solution of the Proposed. 

Obviously, the proposed vector optimal tabu search 

algorithm outperforms its ancestors in both convergence 

performance and solution quality. 
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Fig. 1 The configuration of M-element linear arrays placed on the z-axis. 
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